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Abstrae-The transient energy transfer by simultaneous conduction and radiation in a thermal radiation 
absorbing, emitting and scattering medium is investigated analytically. The medium is confined between 
two gray, diffuse, isothermal planes kept at different but uniform temperatures. The problem is formu- 
lated rigorously in terms of a nonlinear fourth order differential equation. The complexity of the analysis 
for the conventional exact integral formulation is tremendously reduced by introducing this rigorous 
differential formulation. The differential formulation is also found to lend itself mom readily to the different 
limiting and special cases. The numerical results am obtained by using an implicit fiite difference method. 

The temperature distributions am evaluated and compared with the steady-state results. 

NOMENCLATURE 

integrated Planck function, B = a T4 
?c 

[Btu,‘hft2] ; 
speed of light [ft/h] ; 
specific heat [Btu/lb,‘R] ; 
exponential integral of order n, E,(r) 

= ie- rip p*-2 dF; 

outgoing intensities at wall 1 and 
wall 2 respectively, I(O), I@,); 
intensity, radiant energy flowing in 
the direction (I, m, n) per unit of time, 
of solid angle, and of surface area 
normal to (1, m, n) [Btu/hft2/p] ; 
dimensionless intensity, I’ = I/aT:; 

meanintensity, J = & J Ido 

4n 

[Btu/hft2] ; 
thermal conductivity [Btu/hft”R] ; 

L, 
1, m, n, 
N, 

P? 

49 
4 0 

4” 

4+, 

S, 

s+, 

thickness of the plane layer [ft] ; 
direction cosines ; 
conduction-radiation interaction 
parameter, N = kj3/4aT3; 
element of the radiative pressure 
tensor, 

p = ; 
s 

Zp2do [Btu/ft3] ; 

total &rgy flux [Btu/hft’] ; 
conduction heat flux [Btu/hft2] ; 
radiative energy flux, 

q, = 27~ 5 Id,u [Btu/hft2] ; 

dimensromess total energy flux, 

4+=--& 

source fAction S = 1B + (1 - A) .7 

CBtulhft21rl ; 
dimensionless source function, 
S+ = ~/CT: ; 
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time [h] ; 

Fourier modulus, t’ = $; 

temperature [“R] ; 
Coordinate perpendicular to the boun- 
dary [ft]. 

Greek symbols 
thermal diffusivity [ft’/h] ; 
extinction coefficient (absorption 
coefficient + scattering coefficient) 
[ft-‘1 ; 
emissivity of wall surface ; 
dimensionless parameter defined in 
equation (5) ; 
dimensionless temperature, (T/T,) ; 
ratio of absorption to extinction 
coefficient, il = 1 - Go ; 
directional cosine between x and I ; 
dimensionless coordinate, (x/L) ; 
density [lbm/ft3] ; 
Stefan-Boltzmann constant (0.17 14 x 
lo- *) [Btu/hft2”R4] ; 

optical depth, r = j_?x; 
optical thickness of plane layer, 
ZL = FL; 
solid angle ; 
albedo for single scattering (scattering 
coefficient/extinction coefficient). 

Subscripts 

172, refer to wall 1 and wall 2 respectively ; 

c,r, refer to conduction and radiation 
respectively. 

Superscript 
+, denotes dimensionless quantity. 

INTRODUCTION 

LICK [I], studying the transient energy transfer 
problem of simultaneous conduction and radia- 
tion in a semi-infinite gray medium, presented 
asymptotic approximations, for short and long 
periods of time, for two cases corresponding to 
the presence and absence of external radiative 

flux. Nemchinov [2] investigated a similar 
problem where the two-flux approximation for 
radiative transfer was employed. In 1967 un- 
steady energy transfer in a plane layer of radiat- 
ing (nonconducting) stagnant gray gas, where 
physical properties varied with temperature, 
was analyzed by Viskanta and Bathla [3]. 
More recently Heinisch and Viskanta [4], 
using an approximate analysis, have investi- 
gated the problem of transient combined con- 
duction and radiation heat transfer in a semi- 
infinite gray optically thick medium with vari- 
able thermophysical and radiative properties. 

PROBLEM 

The physical model and the coordinate 
system for the present problem are shown 
schematically in Fig. 1. Two opaque gray 
diffuse parallel walls each with a different 
uniform temperature are indicated. Between 
them is a gray stagnant medium that conducts 
heat as well as absorbs, emits and scatters 
radiant energy. The index of refraction of the 
medium is considered to be unity, and all the 
relevant properties are assumed to be indepen- 
dent of temperature and wavelength. 
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FIG. 1. Schematic diagram of physical system 
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ANALYSIS 

The transient one-dimensional energy equa- 
tion for a stagnant radiating medium, in the 
absence of heat sources, may be written as 

a2T a4 +,cg = -kaxZ + -&. (1) 

The transfer equation [S] may be integrated 
over 4x rad after multiplying through by 1 and 
b The results are, respectively, 

84, 

and 

ax = 4#(B - J) (2) 

Combining equations (1) and (2), we obtain 

(3) 

1 -- 
( 

k a2T 
J = B 4zfl~ ax2 

--&. 
> 

(4) 

We now introduce a dimensionless parameter 
relating the photon pressure p and the mean 
intensity J as follows : 

3 CP 
q=GJ’ (5) 

Equation (4) indicates that q is equal to unity for 
half-range isotropic intensity distribution in 
both directions. It can also be shown that 
tf x 1 for both the optically thick and thin 
limits [6]. Equations (3) and (4) yield 

Combining equations (4) and (6), we obtain 

4~ a 
q,= --- 

38 ax 
tl ( B ZT a -- 

47tj3n a2 --PCx . (7) ?I 

(6) 

Differentiating equation (7) with respect to x, 
energy equation (1) becomes 

Introducing the following dimensionless para- 
meters : 

Equations (8) and (7) in dimensionless form 
become, respectively, 

ae a28 i a2 -_=--+ 
at at2 Gj-p(@J 

Equation (10) is a non-linear fourth-order 
partial differential equation. Notice, however, 
that q contained in equation (10) requires inte 
gration. This equation must be solved with four 
appropriate boundary conditions. Two boun- 
dary conditions are 

8 (0, t’) = 1 

0 (1, t’) = ez = constant (12) 

Two more boundary conditions can be ob- 
tained by using the radiosities at both walls. 
The radiation balance results in [6] : 

(13) 
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q’ = - 
*2 

s TL 

3- a2 S +(z’) E3(rL - z’) dr’. (14) 
0 

Initially we set the temperature at T,, i.e. 

6(&O) = 1. (15) 

Equations (12x15) constitute the complete 
set of initial and boundary conditions for 
fourth-order d~erenti~ equation (10) for which 
we now list some limiting cases. 
(1) N % 1 and tL % 1 

Equation (IO) reduces to the one-dimensional 
heat conduction equation. 
(2) Optically thick limit (rL % 1) 

atI a2 ( 1 e+!!C 
;iT;=ay” 3N’ (16) 

For q = 1, equation (16) indicates that the 
net total heat flux is the sum of heat transfer by 
pure conduction and by pure radiation (as given 
by the Rosseland approximation). 
(3) Conduction pr~o~n~t case (N 9 1) 

Equation (10) becomes 

ae a28 I a2 -=---- 
at at” 3ar; a<= 

i a2 a8 -- 
i- 3az;at2 % * ( > 

(17) 

(4) The case of weakly interacting system 
(N/AZ: 9 1) and (N < 1). Tbis implies 
1 2 N + nr;. 

Equation (10) reduces to 

which 
grated 

~(~~)=~(~~~ 08) 

yields the solution directly when inte- 
twice. 

(5) Optically thin limit and radiation pre- 
dominant system (rL $ 1 and N/Jr: szs 1). 
This implies N 4 R. 

(1% 

RESULTS AND DISCUSSION 

Where both N and 7; are large compared 
with unity, the temperature distribution ap- 
proaches that for pure conduction as in the 
N = r = 1 results shown in Fig. 2. For a large 
value of rL, 10, and a small value of N, 0.01, the 
results are depi&ed in Fig. 3 ; this problem can 
be solved by using the Rosseland approximation, 
see equation (16). Keeping the same N value, 
@Ol, and reducing the rL to 1 gives the results 
that are shown in Fig 4 which look quite unlike 
the pure conduction results in terms of shape 
and dimensionless time required to approach 
steady state. Another case not greatly different 
from pure conduction is that where rL = 1.0 
and N = 0.1 (Fig. 5). 

f ‘= 0 
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FIG. 2 Variation of dimensionless temperature with 
dimensionless thickness for 8, = 0.5, tr_ = 1.0 and N = 1.0. 

Most of these transient results differ from 
those of simple conduction in that the steady 
state is approached more rapidly. Also, instead 
of the diffusion type of heat flow where the 
temperature variation occurs only near the 
5 = 1 boundary for small values of t’, the temp- 
erature change penetrates deeply. This could be 
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FIG. 3. Variation of dimensionless temperature with 
dimensionless thickness for 0, = 0.5, 7L = 10, iV = Oal. 

investigated further by examining the heat flux 
at { = 0 [6]. The value of 11 tends to be near 
unity for a number of cases; thus the calculation 
procedure can sometimes be simplified by letting 
h = 1 [S]. 

08- 

l9 - 

0.7 - 

0.6 - 

0.55 
0 0.25 050 075 

t- 
IO 

(a) The complexity of the analysis for the 
conventional integral formulation [3] is tremen- 
dously reduced by the introduction of this 
rigorous differential method, 

(b) The resulting differential formulation is 
found to lend itself more readily to the various 
limiting and special cases, 

(c) The unique quality of this analysis is that 
it has the advantage of being particularly 
adaptable to digital solution and to extension to 
other more difficult geometries. 
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TRANSPORT D’ENERGIE INSTATIONNAIRE AVEC COMBINAISON DE LA CONDUCTION 
ET DU RAYONNEMENT EN EMPLOYANT UNE METHODE DIFFERENTIELLE 

RIGOUREUSE 

Rbsum&-Le transport d’energie transitoire par conduction et rayonnement simultanes est ttudie analy- 
tiquement dans un milieu absorbant, emettant et diftusant le rayonnement thermique. Le milieu est confine 
entredeuxplansgris, diffisetisothermesgardb~destemp~raturesuniformesmaisdiff~rentes.Leprobi~me 
est formult rigoureusement sous la forme d’une equation differentielle non-lin&aire du quatribme ordre. 
La complexite de l’analyse pour la formulation integrale exacte classique est r&duite considerablement 
en introduisant cette formulation differentielle rigoureuse. On trouve aussi que la formulation differentielle 
se p&e elle-meme plus facilement aux differente cas speciaux et limites. Les rtsultats numeriques sont 
obtenus en employant une mtthode implicite de differences tinies. Les distributions de temperature sont 

Cvalukes et cornpark avecles resultats en regime permanent. 

BERECHNUNG DES INSTATIONAREN WARMETRANSPORTS DURCH LEITUNG UND 
STRAHLUNG IM GLEICHEN FELD NACH EINER STRENGEN DIFFERENTIALMETHODE 

Zusammenfassung-In einem, Temperaturstrahlung absorbierenden, emittierenden und streuenden 
Medium wird der gleichzeitig durch Leitung und Strahlung bewirkte Energietransport analytisch unter- 
sucht. 

Das Medium wird durch zwei, grau und diffus reflektoerende, isotherme Flachen begrenzt, welche auf 
verschiedenen Temperaturen gehalten werden. Das Problem wird streng durch eine nichtlineare Differen- 
tialgleichung vierter Ordnung beschrieben. Die grossen mathematischen Schwierigkeiten bei Losung 
dieser Aufgabe in der iiblichen Weise, als Integralgleichungsproblem, werden durch die EinWhrung der 
Differentialform wesentlich verringert. Die Differentialform erweist sich such als geeignteter zur Unter- 
suchung von Grew und Spezialf6llen. 

Die numerischen Resultate werden mit Hilfe eines impliziten Differenzenverfahrens erhalten. Die 
errechneten Temperaturverteilungen werden mit den Ergebnissen des station&n Falles verglichen. 

IIEPEAAsA HEYCTAHOBMBIIIEBCH 3HEPrHkl OAHOBPEMEHHO 
ICOHAYKIJBE6? M M3JIY4EHIJEM, OIIPEAEJIEHHOB CTPOIV 

ABQQEPEHIJkiAJIbHbIM METOAOM 

AnaoTa~M~-AHanurTElqecHoe krccjIefionaune nepefiascl HeyCTaHOBMBIIIeikK aneprrrri 
o~nospeMenn0 non~ynnrrelt n asnyseanelcl n cpeae nornamaromefi, nanysatomet n paccen- 
naromet Tennonoe nsrrysenne. Cpena 3aKnro9ena MemAy Any~ft HetiTpanbnbrMn, AII$&HAR- 
POBaHHblMH H30MeT&WICCKBMII IIJrOCKOCTFIMM, TeMnepaTypa KOTOpbIX pa3nwman, no 
nOCTORHHaFI.~po6~eMa~OpMy~HpyeTC~BCTpOrOHe~liH0iHOM YeTBepTOM nOpKAKeAI@'@+- 
HnIIaJIbHOrO ypaBHeHEIH. Cnom~b~B aHasma IwmcneHMK np~~KT0r0 TOYHOPO IwTerpana, 
O'IeHb 06JIerHaeTCH BBeJbZHIeM 3T08 CTpOrO ~I@I@peHHIIanbHOfi $OJZIMynkIpOBKII. Hanmrr, 
9TO )@Il$QtepeHHHaJIbHOe ACYeCJIenHe TaK?Kt? JIeFIe npIIMeHRTb B p33JIJNHblX Kp3tiHHX II 
Cno~Ma~bHbIXCny4aFiX.~llC~3HHbIepe3y~bTaT~nOJry4lmHH0RBH~M~IIHMTOBLlMpa3HOCTHMM 

Mt?TO]lOM. OIlpeAC!JlAJIH pacnpeHeJreHHR TeMnepaTyp II CpaBHtiJIII HX f' pC3yJIbTaTaMM 
yCTaHOBMBmerOCII PWKKMa. 


